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ABSTRACT

Most scientific computations serve to apply mathematical
operations to a set of preconceived data structures, e.g., ma-
trices, vectors, and grids. In this paper, we use a number
of widely used matrix computations from the LINPACK li-
brary to demonstrate that complex internal organizations
of data structures can severely degrade the effectiveness of
compilers optimizations. We then present a data layout
oblivious optimization methodology, where by isolating an
abstract representation of computations from complex im-
plementation details of their data, we enable these compu-
tations to be much more accurately analyzed and optimized
through varying state-of-the-art compiler technologies.

Categories and Subject Descriptors:

D.3.4 [Processors]: Compilers, Optimization

Keywords : Compiler, Optimization, Packed matrix, High-
performance computing

1. INTRODUCTION

Amajority of scientific computation kernels typically serve
to apply a sequence of domain-specific operations to a pre-
conceived set of compound data structures, e.g., matrices,
vectors, grids, and graphs. To effectively optimize these
computations, a compiler must be able to correctly deci-
pher the dependence relations among statements operating
on different data. While compilers have used dependence

analysis as the foundation of optimization for more than
thirty years, the accuracy of dependence analysis could be
severely degraded by complex data structures. Take the
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well-understood dense matrix multiplication for instance.
When a non-rectangular matrix is stored in a packed lay-
out such as those in Figure 1(b), the array subscripts used
to reference different elements of the matrix could become
extremely complex, which could easily overwhelm the inter-
nal dependence analysis of a compiler and thus thwart all
optimizations to the matrix computation code.

We present a layout-oblivious optimization methodology
to overcome these difficulties. In particular, using a nor-
malization algorithm, our method seeks to isolate the high
level semantics of operations from the organization details of
compound data structures and thereby to derive an abstract
specification of operations to be applied to the data. The
simplified computation can then be accurately analyzed and
optimized through varying state-of-the-art compiler tech-
nologies. Finally, the optimized operations are combined
with the previously isolated implementation details of their
data to generate the final optimized code of the original
computation.

2. THE OVERALL APPROACH
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Figure 2: Overview of our approach.

Figure 2 shows an overview of our approach, which takes
two inputs, the computational kernel to be optimized and
a set of annotations that define the internal organization
of matrices used in the kernel. It produces optimized code
through the following steps:

1. Matrix normalization. This step seeks to isolate
the high level semantics of matrix operations from im-
plementation details of matrices within the input com-
putation, by automatically converting all the relevant
array references to a higher level representation which
uses (row,column) coordinates to access each abstract
matrix.
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Figure 1: Layout example for triangular, banded and banded triangular matrices.

(1) Function definition:
%fun name(p1,...pn) = e1 if (c)

| e2 otherwise;
(2) Type definition:

@type name(p1,...,pn) =
@matrix : (row:[l..u],col:[l..u])=> e;

(3) Variable annotation:
$x : @type name(e1,...en);

* p1,...,pn: parameter names;
* e, e1, e2, ..., en: integer expressions;
* c : a boolean expression;
* [l..u] : an integer type with values ≥ l and ≤ u;
* fun name: the name of a local function;
* type name: type name of special matrices;
* x: name of a matrix variable in the input code;

Figure 3: Matrix Annotation Language

2. Optimization. This step applies state-of-the-art com-
piler optimizations, e.g., parallelization, tiling [3], ar-
ray copying, unroll-and-jam, and scalar replacement,
to the normalized code, which operates on abstract
matrices. Note that some layout-sensitive optimiza-
tions, e.g., SSE vectorization, require array addresses
to be aligned and thus need to be turned off in this
step.

3. Matrix de-normalization. This step takes the op-
timized code from Step(2) and modifies all the refer-
ences of abstract matrix coordinates to instead access
the corresponding locations in their original condensed
matrix storage forms.

3. MATRIX ANNOTATIONS

Figure 3 shows our matrix annotation language designed
to allow programmers to easily define the intended semantics
of data structures in matrix computations, including three
different statements: function definitions, type definitions,
and variable annotations.

Function Definitions. Shown at line (1) of Figure 3,
function definitions are used by our annotation language
to express complex non-linear functions which may be re-
quired to annotate access functions of different matrix stor-
age forms.

Type Definitions. Shown at line (2) of Figure 3, type
definitions are used by our annotation language to define a
special matrix form and specify how to locate each matrix
element at an arbitrary (row, col) coordinate in the con-
densed storage layout. Here, @matrix is a keyword and
(row[l1..u1], col[l2..u2]) specifies the coordinate parameters
of an abstract matrix.

Variable Annotation. Shown at line (3) of Figure 3,

variable annotations in our language serve to declare addi-
tional type information for matrix variables inside a given
input code, especially those that use special storage forms.
These matrix annotations can be embedded inside the input
code by enclosing them in C language comments if desired,
so that they can be ignored by other compilers.

4. EXPERIMENTAL RESULTS

We have implemented our layout-oblivious approach us-
ing the POET language [4], and used the Pluto [1] and the
EPOD [2] source-to-source C compilers to optimize triangu-
lar matrix multiply variants - mm.tri.abs and mm.tri.packed,
which represent a triangular matrix in the abstract and
packed layout, respectively.

We used the icc compiler version 11.0 to compile the
sources to machine code with the -openmp and -fast op-
tions. We evaluated the benchmarks using randomly ini-
tialized 2048*2048 matrices, and carried out all of our ex-
periments on an 8-core Intel platform with two 2.33GHz
quad-core Xeon 5410 processors. Each processor has 32KB
L1 data cache per core, 32KB L1 instruction cache per core,
and 6MB L2 unified data/instruction cache shared by all
cores.

H
H
H
HH

icc EPOD EPOD+LO Pluto Pluto+LO

abstract 0.04 102.7 102.7 12.3 12.3
packed 0.04 0.04 94.1 0.04 11.9

Table 1: Performance results for triangular matrix multiply using
our approach with EPOD and Pluto, in GFLOPS.

Table 1 shows the performance results when using our
approach together with EPOD and Pluto. With our layout-
oblivious optimization approach, the computational kernels
which originally cannot be analyzed by compilers can benefit
from normalizing its data accesses and become optimizable.
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